MATH 320 NOTES 2

So, far we know that if A € M, ,(F'), the following are equivalent:
(1) A is invertible.

)
(2) rcmk( ) =n.
(3) Az = 0 has only the trivial solution.
(4) Az = b has a unique solution for every b.

Next we will define the determinant of a matrix, det(A) € F, and show
that the above hold iff det(A) # 0. So, computing the determinant will be
one more way of deciding if A is invertible.

Section 4.1 Determinants of order 2

a b

Definition 1. Let A = (C d)' The determinant of A is det(A) = ad — be.

Some remarks:

(1) det(I2) =1, the determinant of the zero matrix is 0.

(2) If A has a zero row or a zero column, det(A) = 0.

(3) If the row of A are multiples of each other, then det(A) = 0. That’s
because if a = k¢, b = kd, we have ad — bc = ked — kde = 0.

It turns out that the converse of the last item is also true:

Theorem 2. Let A = <a b
c d

>. Then A is invertible iff det(A) # 0.

Proof. The easy direction: If A is not invertible, then rank(A) < 2, so the
rows are linearly dependent, so they are multiples of each other, and so by
the above note, det(A) = 0.

Now for the harder direction: If A is invertible, then rank(A) = 2, and
so A cannot have a zero row. So, a # 0 or b # 0 (or both). Suppose a # 0
(the other case is similar). Then by the type 3 elementary row operation,
Ry — £ Ry, we obtain the matrix

a b
BZ(o d—c;>

Since elementary row operations preserve the rank, we have that rank(B) =
rank(A) = 2, and so B is invertible. Then B cannot have a row of zeros. It
follows that d — %b # 0, and so da # cb. Then det(A) = ad — ¢b # 0.

([l

—C a

Lemma 3. Suppose A = (CCL Z) is invertible. Then A~' = detl(A) (d _b>
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a b d —b a b d —b
Proof. Calculate <C d> #(M (C a) = ﬁ(m <C d) <C a) —

1 ad — bc 0 7
det(A) 0 ad —be) — 72

As a function det : My o(F') — F is not a linear transformation, but it is
something close.

O

Lemma 4. The function det : My o(F) — F is a linear function of each
row, when the other one is fired:

e det apt+az byt b —det (™ b + det az by .
c d c d c d

ka kb a b
odet(c d)zk:det<c d)'

Similarly, if we fix the first row.

Section 4.2 Determinants of order n.

First let us introduce some notation. Let A € M, «,(F'). We will denote
the (i,7)-th entry by a;;. Also, given 1 < i,j < n, let A;; € My_1xp—1(F)
be the submatrix obtained by removing the i-th row and the j-th column of
A.

Definition 5. Let A € Myxn(F). If n =1, det(4) = A =ay1. If n > 1,
then B
det(A) = 212:1(—1)’““%;C -det(Azg).

Note that this definition is by induction on n. I.e. we assume we know the
definition of determinant of dimension (n —1) x (n — 1), and use it to define
the determinant in the case of dimension n x n. Also, the above formula is
computing the determinant of A along the first row. Later we will see that
we can compute it along any row or column.

Exercise: Verify that for n = 2, the above formula gives the same definition
as in the last section.
The next lemma is the generalization of Lemma 4 for n by n matrices.

Lemma 6. The function det : Myxn,(F) — F is a linear function of each
row, when the other ones are fixed. More precisely,

ajl ap ap
Ar—1 Aar—1 ar—1

det | u+dv | =det u + ddet v
ar41 Aar4+1 Aar4+1

an an an
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Proof. The proof is by induction on n. If n = 1, it is clear, so suppose n > 1.

a1 al al
ar—1 ar—1 ar—1

Let A= |u+dv |; B= u [;C= v
ar+1 ar+1 ar+1

an an an

We want to show that det(A) = det(B) + ddet(C). There are two cases.
Case 1. r = 1. Then, by our definition, det(A4) =

2:1(—1)k+1a1k . det(Zlk) = 2:1(—1)k+1 (blk + dClk) . det(Zlk) =

Y (D) by - det(Ag) +dER_, (— 1) ey - det(Ayy) = det(B)+d det(C)

Note that here for every k, Ay;, = C1;, = By, because the only difference in
the matrices A, B, and C is the the first row.

Case 2. r > 1. Then det(A) = ¥7_,(—1)*"tay;, - det(A1x) and by the
inductive hypothesis, for each k,

det(Zlk) = det(Elk) + ddet(@lk).

This is because, the submatrices have dimension (n — 1) x (n — 1), and the
(r — 1)-th row of Ay, equals the (r — 1)-th row of By, plus d times the
(r — 1)-th row of C'1;. Plugging in, we have,

det(A) =

= E};‘Zl(—l)k+1a1k - (det(Byy) + ddet(C1)) =

=Y (=) ay - det(Biy) + dBp_; (1) ayy - det(Crp) =

= det(B) + ddet(C). O

Corollary 7. If A has a row of zeros, then det(A) = 0.

Proof. Say the r-th row of A has only zeros, i.e. this row is 0 = 0-0. Then
by the above lemma applied to row r, we have that det(A) = 0-det(A) = 0.
U

Our next goal is to show that we can compute the determinant by ex-
panding along any row. First we show it in the simplest case — when the
row in question is of the form e, for some k, i.e. the vector with 1 in the
k-th coordinate and Os everywhere else.

Lemma 8. Let A € Myxn(F) and suppose that the r-th row of A is ex.
Here 1 <k,r <n and 1 <n. Then det(A) = (—1)"+ ¥ det(A ).

Proof. By induction on n. For n = 2, it is an exercise to verify it.
Suppose n > 2, and we have the result for smaller dimensions. Again we
divide it into two cases.
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Case 1. k = 1. Then aj; = 1 and for all j # k, a;; = 0. So by
the formula for the determinant, we have det(A) = (—1)"** det(A1;x) =
(_1)r+k det(zrk)'

Case 2. k > 1. Then by the inductive hypothesis for each submatrix
Alj:

e if j =k, the r — 1-th row is 0 (because we have removed the k-th
column on A). Then det(A;x) = 0 by the above corollary.

o if j # k, the » — 1-th row is ej (with one less dimension). Then, by
induction,
(1) det(le) = (—1)T71+k71 det(er), if j <k
(2) det(Ay;) = (1) "k det(C,y), if j > k
where C,; is the submatrix of A;; by removing the r-th row and j-th
column of le.

When we plug this information if the formula for the determinant, after

some computation, we get the desired result. For details, see pg 214 in the
textbook. (]

Now we can finally prove a very useful fact about determinants: the we
can compute them by expanding along any row of A.

Theorem 9. Let A € Myx,(F), and let 1 <i < n. We can compute det(A)
by expanding along row i as follows: det(A) = Z;‘:l(—l)i“aik - det(Asj).

Proof. Denote the i-th row of A by a; = (a;1, @i2, ..., Gin) = a;1€1+ ...+ ainen.
Fir each j < n, let Bj € Myx,(F) be the matrix obtained by replacing a;
with e;, i.e. A and Bj differ only in row i. (For example the ith row of B;
is (1,0, ...,0) and every other row is like in A.)

By Lemma 8, we have that for each j, det(B;) = (—1)"J det((?j)ij).
Since ®m is obtained from B; by removing the i-th row and the j-column.
Since the only difference between A and each B; is in the i-th row, it follows

that (Bj)ij = A;;. Plugging in, we get
det(B;) = (—1)""7 det(A;;).
Then, by linearity (Lemma 6), we have that
det(A) = B a;; det(B;) = X7_1 (1) ay; det(Ay;).
O

Using the above theorem, next we will show what effect doing elementary
row operations have on the determinant of a matrix.

Lemma 10. (Elementary row operations and the determinant) Suppose A €
M, xn(F) and B is obtained from A by doing one elementary row operation.

(1) (Type 1) If B is obtained from A by interchanging two rows, then
det(B) = —det(A).
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(2) (Type 2) If B is obtained from A by multiplying one row by k, then
det(B) = kdet(A).

(3) (Type 3) If B is obtained from A by adding a multiple of one row to
another, then det(B) = det(A).

Proof. Part 1. By induction on n. If n = 2, it is a straightforward calcu-
lation. Suppose that we interchange rows r and k. Let ¢ < n, i # r,i # k.
Expanding along row ¢, we get, det(B) = Z?Zl(—l)”jbij det(B;;).

Now, for each j, Bjj, is obtained from A;; by interchanging rows r and
k, and so by induction, det(B;;) = — det(4;;). Also, since the i-th row of A
and B are the same, we have that a;; = b;; for all j < n. So,

det(B) = S7_; (=1)" by det(Byj) = £h_1(—1) P ag(— det(Ay;)) =
—E;L:l(—l)i+jaij det(ZZ-j) = — det(A)

Part 2. Suppose that B is obtained by multiplying row ¢ by k. Expanding
along row ¢, we have that

det(B) = ?:1(—1)i+jbij det(Eij) ==

E;-L:l(—l)i+jkaij det(Zij) = k:E;-L:l(—l)”jaij det(Zij) =k det(A).

Here A;; = B;;, because we only changed row i.

Part 3. Again, this is by induction on n. Suppose B is obtained from A
by adding a multiple of row r to row k. If n = 2, this can be verified directly.
Otherwise, let ¢ < n,i # r,i # k. Then for all j < n, Pij is obtained from
Zij by adding the same multiple of of row r to row k. So, by induction,

det(B;;) = det(A;j). Expanding along row 4, we have that
det(B) = Sy (—1)by; det(Biy) = T2y (1) ay; det(Ay;) = det(A).
(]

The following is an immediate corollary:

Corollary 11. If A, B € Myxn(F') are such that B is obtained from A by
doing elementary row operations, then det(B) = 0 iff det(A) = 0.

Theorem 12. Let A € Myxpn. Then det(A) = 0 iff rank(A) < n iff A is

not tnvertible.

Proof. We already know that rank(A) < n iff A is not invertible from pre-
vious sections. So, we just have to show this is equivalent to det(A) = 0.

For one direction, suppose rank(A) < n. Then its rows must be linearly
dependent, so there is some row, say row i, which can be written as a
linear combination of the other rows. Then by doing type 3 elementary row
operations, adding multiples of other rows to row ¢, we obtain a matrix B
from A, such that the i-th row of B is all zeros. Then det(B) = 0. But since
doing type 3 elementary row operations don’t change the determinant, we
also have det(A) = 0.
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For the other direction, suppose that rank(A) = n. Then by doing ele-
mentary row operations, we can obtain I, from A. Since det(I,) = 1 # 0,
then det(A) # 0.

O

Section 4.3 A couple of more properties of the determinant.
We start with two lemmas that follow from the effect of doing elementary
row operations on the determinant.
Lemma 13. Suppose that E is an elementary row matrix.

(1) (Type 1) If E is obtained by interchanging two rows of I, then

det(E) = —1;
(2) (Type 2) If E is obtained from I, by multiplying a row by k, then
det(E) = k;

(3) (Type 3) If E is obtained from I, by adding a multiple of one row to
another, then det(E) = 1;

Proof. The proof is immediate using Lemma 9 and that det(I,,) = 1. ([

Lemma 14. Suppose that A = EB, where E is an elementary (row) matriz,
then det(A) = det(F) - det(B)

Proof. (1) (Type 1) If E is obtained by interchanging two rows of I,,,
then det(F) = —1 and A is obtained from B by interchanging the
same two rows. So

det(A) = — det(B) = det(E) - det(B);

(2) (Type2) If E is obtained from I,, by multiplying a row by k, det(E) =
k and A is obtained from B by multiplying the same row by k. So

det(A) = kdet(B) = det(E) - det(B);

(3) (Type 3) If E is obtained from I,, by adding a multiple of one row
to another, then det(E) = 1 and A is obtained from B by same
operation. So

det(A) = det(B) = det(E) - det(B);
g

And now, for the main theorem about matrix multiplication and the de-
terminant:

Theorem 15. Suppose that A, B € Myxn(F). Then
det(AB) = det(A) - det(B).

Note that this also means that det(AB) = det(BA), although of course
in general AB # BA.
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Proof. Case 1 det(A) = 0. Then rank(AB) < rank(A) < n, and so
det(AB) = 0. The. det(AB) =0 = det(A) - det(B).

Case 2 det(A) # 0. Then A is invertible. And so it is the products
of elementary matrices. (We can assume these are row elementary). Write
A = FE4...E), where each E; is elementary. Then

det(AB) = det(E1 - LBy B) = det(El)det((EQ N A B) =..
det(E7)det(Es)-...det(Ey)-det(B) = det(E;-...Ey) det(B) = det(A) det(B).
O

Corollary 16. If A is invertible, det(A™!) = ﬁm).

Proof. Exercise. O

Finally, we note that the lemmas about elementary row operations and
the determinant also hold for column operations. I.e. we have:

Fact 17. Suppose that B is obtained from A by doing one elementary column
operation. Say B = AE, where E is an elementary column matriz. Then,

if E is of:

(1) Type 1, interchanging two rows: det(F) = —1, det(B) = —1det(A4);

(2) Type 2, multiplying a row by k: det(E) = k, det(B) = kdet(A);

(3) Type 3: det(E) =1, det(B) = det(A).
In particular, if E is an elementary matriz (row or column), then

det(E) = det(E").
We leave the proof as an exercise.

Lemma 18. det(A!) = det(A).

Proof. If A is not invertible, then det(A) = 0, and n > rank(A) = rank(A?),
so Al is not invertible and det(A?) = 0.
If A is invertible, then A = FEj - ... - E}, where each E; is elementary. So

At =(Ey-...-Ey)' =E} -...- Ei,
and for each i < k, det(E!) = det(E;). Then,
det(A") = det(EfL-....EY) = det(EL)-...-det(FL) = det(Ey)-...-det(E;) = det(A).
O



