So, far we know that if $A \in M_{n,n}(F)$, the following are equivalent:

- (1) A is invertible.
- (2) rank(A) = n.
- (3) $Ax = \mathbf{0}$ has only the trivial solution.
- (4) $Ax = \mathbf{b}$ has a unique solution for every \mathbf{b} .

Next we will define **the determinant** of a matrix, $det(A) \in F$, and show that the above hold iff $det(A) \neq 0$. So, computing the determinant will be one more way of deciding if A is invertible.

Section 4.1 Determinants of order 2

Definition 1. Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The determinant of A is $det(A) = ad - bc$.

Some remarks:

- (1) $det(I_2) = 1$, the determinant of the zero matrix is 0.
- (2) If A has a zero row or a zero column, det(A) = 0.
- (3) If the row of A are multiples of each other, then det(A) = 0. That's because if a = kc, b = kd, we have ad bc = kcd kdc = 0.

It turns out that the converse of the last item is also true:

Theorem 2. Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then A is invertible iff $det(A) \neq 0$.

Proof. The easy direction: If A is not invertible, then rank(A) < 2, so the rows are linearly dependent, so they are multiples of each other, and so by the above note, det(A) = 0.

Now for the harder direction: If A is invertible, then rank(A) = 2, and so A cannot have a zero row. So, $a \neq 0$ or $b \neq 0$ (or both). Suppose $a \neq 0$ (the other case is similar). Then by the type 3 elementary row operation, $R_2 - \frac{c}{a}R_1$, we obtain the matrix

$$B = \begin{pmatrix} a & b \\ 0 & d - \frac{cb}{a} \end{pmatrix}$$

Since elementary row operations preserve the rank, we have that rank(B) = rank(A) = 2, and so B is invertible. Then B cannot have a row of zeros. It follows that $d - \frac{cb}{a} \neq 0$, and so $da \neq cb$. Then $det(A) = ad - cb \neq 0$.

Lemma 3. Suppose
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is invertible. Then $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Proof. Calculate
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = I_2$$

As a function det : $M_{2,2}(F) \to F$ is *not* a linear transformation, but it is something close.

Lemma 4. The function det : $M_{2,2}(F) \to F$ is a linear function of each row, when the other one is fixed:

• det
$$\begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ c & d \end{pmatrix}$$
 = det $\begin{pmatrix} a_1 & b_1 \\ c & d \end{pmatrix}$ + det $\begin{pmatrix} a_2 & b_2 \\ c & d \end{pmatrix}$.
• det $\begin{pmatrix} ka & kb \\ c & d \end{pmatrix}$ = $k \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Similarly, if we fix the first row.

Section 4.2 Determinants of order n.

First let us introduce some notation. Let $A \in M_{n \times n}(F)$. We will denote the (i, j)-th entry by a_{ij} . Also, given $1 \leq i, j \leq n$, let $\overline{A}_{ij} \in M_{n-1 \times n-1}(F)$ be the submatrix obtained by removing the *i*-th row and the *j*-th column of A.

Definition 5. Let $A \in M_{n \times n}(F)$. If n = 1, $det(A) = A = a_{11}$. If n > 1, then

$$\det(A) = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot \det(\overline{A}_{1k}).$$

Note that this definition is by induction on n. I.e. we assume we know the definition of determinant of dimension $(n-1) \times (n-1)$, and use it to define the determinant in the case of dimension $n \times n$. Also, the above formula is computing the determinant of A along the first row. Later we will see that we can compute it along any row or column.

Exercise: Verify that for n = 2, the above formula gives the same definition as in the last section.

The next lemma is the generalization of Lemma 4 for n by n matrices.

Lemma 6. The function det : $M_{n \times n}(F) \to F$ is a linear function of each row, when the other ones are fixed. More precisely,

$$\det \begin{pmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{r-1} \\ \mathbf{u} + d\mathbf{v} \\ \mathbf{a}_{r+1} \\ \vdots \\ \mathbf{a}_{n} \end{pmatrix} = \det \begin{pmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{r-1} \\ \mathbf{u} \\ \mathbf{a}_{r+1} \\ \vdots \\ \mathbf{a}_{n} \end{pmatrix} + d \det \begin{pmatrix} \mathbf{a}_{1} \\ \vdots \\ \mathbf{a}_{r-1} \\ \mathbf{v} \\ \mathbf{a}_{r+1} \\ \vdots \\ \mathbf{a}_{n} \end{pmatrix}.$$

Proof. The proof is by induction on n. If n = 1, it is clear, so suppose n > 1.

Let
$$A = \begin{pmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_{r-1}} \\ \mathbf{u} + d\mathbf{v} \\ \mathbf{a_{r+1}} \\ \vdots \\ \mathbf{a_n} \end{pmatrix}; B = \begin{pmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_{r-1}} \\ \mathbf{u} \\ \mathbf{a_{r+1}} \\ \vdots \\ \mathbf{a_n} \end{pmatrix}; C = \begin{pmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_{r-1}} \\ \mathbf{v} \\ \mathbf{a_{r+1}} \\ \vdots \\ \mathbf{a_n} \end{pmatrix}$$

We want to show that det(A) = det(B) + d det(C). There are two cases. **Case 1.** r = 1. Then, by our definition, det(A) =

$$\sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot \det(\overline{A}_{1k}) = \sum_{k=1}^{n} (-1)^{k+1} (b_{1k} + dc_{1k}) \cdot \det(\overline{A}_{1k}) =$$

 $\Sigma_{k=1}^{n}(-1)^{k+1}b_{1k}\cdot \det(\overline{A}_{1k}) + d\Sigma_{k=1}^{n}(-1)^{k+1}c_{1k}\cdot \det(\overline{A}_{1k}) = \det(B) + d\det(C)$ Note that here for every $k, \overline{A}_{1k} = \overline{C}_{1k} = \overline{B}_{1k}$, because the only difference in the matrices A, B, and C is the the first row.

Case 2. r > 1. Then $det(A) = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot det(\overline{A}_{1k})$ and by the inductive hypothesis, for each k,

$$\det(\overline{A}_{1k}) = \det(\overline{B}_{1k}) + d\det(\overline{C}_{1k}).$$

This is because, the submatrices have dimension $(n-1) \times (n-1)$, and the (r-1)-th row of \overline{A}_{1k} equals the (r-1)-th row of \overline{B}_{1k} plus d times the (r-1)-th row of \overline{C}_{1k} . Plugging in, we have, $\det(A) =$ $= \sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot (\det(\overline{B}_{1k}) + d\det(\overline{C}_{1k})) =$ $= \sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot \det(\overline{B}_{1k}) + d\sum_{k=1}^{n} (-1)^{k+1} a_{1k} \cdot \det(\overline{C}_{1k}) =$ $= \det(B) + d \det(C).$

Corollary 7. If A has a row of zeros, then det(A) = 0.

Proof. Say the *r*-th row of *A* has only zeros, i.e. this row is $\mathbf{0} = 0 \cdot \mathbf{0}$. Then by the above lemma applied to row *r*, we have that $\det(A) = 0 \cdot \det(A) = 0$.

Our next goal is to show that we can compute the determinant by expanding along any row. First we show it in the simplest case – when the row in question is of the form e_k , for some k, i.e. the vector with 1 in the k-th coordinate and 0s everywhere else.

Lemma 8. Let $A \in M_{n \times n}(F)$ and suppose that the r-th row of A is e_k . Here $1 \le k, r \le n$ and 1 < n. Then $\det(A) = (-1)^{r+k} \det(\overline{A}_{rk})$.

Proof. By induction on n. For n = 2, it is an exercise to verify it.

Suppose n > 2, and we have the result for smaller dimensions. Again we divide it into two cases.

Case 1. k = 1. Then $a_{1k} = 1$ and for all $j \neq k$, $a_{1j} = 0$. So by the formula for the determinant, we have $\det(A) = (-1)^{1+k} \det(\overline{A}_{1k}) = (-1)^{r+k} \det(\overline{A}_{rk})$.

Case 2. k > 1. Then by the inductive hypothesis for each submatrix \overline{A}_{1j} ,

- if j = k, the r 1-th row is **0** (because we have removed the k-th column on A). Then $det(\overline{A}_{1k}) = 0$ by the above corollary.
- if $j \neq k$, the r 1-th row is e_k (with one less dimension). Then, by induction,
 - (1) $\det(\overline{A}_{1j}) = (-1)^{r-1+k-1} \det(C_{rj}), \text{ if } j < k$

4

(2) $\det(\overline{A}_{1j}) = (-1)^{r-1+k} \det(C_{rj}), \text{ if } j > k$

where C_{rj} is the submatrix of \overline{A}_{1j} by removing the *r*-th row and *j*-th column of \overline{A}_{1j} .

When we plug this information if the formula for the determinant, after some computation, we get the desired result. For details, see pg 214 in the textbook. $\hfill \Box$

Now we can finally prove a very useful fact about determinants: the we can compute them by expanding along any row of A.

Theorem 9. Let $A \in M_{n \times n}(F)$, and let $1 \le i \le n$. We can compute $\det(A)$ by expanding along row *i* as follows: $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ik} \cdot \det(\overline{A}_{ij})$.

Proof. Denote the *i*-th row of A by $a_i = \langle a_{i1}, a_{i2}, ..., a_{in} \rangle = a_{i1}e_1 + ... + a_{in}e_n$. Fir each $j \leq n$, let $B_j \in M_{n \times n}(F)$ be the matrix obtained by replacing a_i with e_j , i.e. A and B_j differ only in row *i*. (For example the *i*th row of B_1 is $\langle 1, 0, ..., 0 \rangle$ and every other row is like in A.)

By Lemma 8, we have that for each j, $\det(B_j) = (-1)^{i+j} \det(\overline{(B_j)}_{ij})$. Since $\overline{(B_j)}_{ij}$ is obtained from B_j by removing the *i*-th row and the *j*-column. Since the only difference between A and each B_j is in the *i*-th row, it follows that $\overline{(B_j)}_{ij} = \overline{A}_{ij}$. Plugging in, we get

$$\det(B_i) = (-1)^{i+j} \det(\overline{A}_{ij}).$$

Then, by linearity (Lemma 6), we have that

$$\det(A) = \sum_{j=1}^{n} a_{ij} \det(B_j) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(\overline{A}_{ij}).$$

Using the above theorem, next we will show what effect doing elementary row operations have on the determinant of a matrix.

Lemma 10. (Elementary row operations and the determinant) Suppose $A \in M_{n \times n}(F)$ and B is obtained from A by doing one elementary row operation.

(1) (Type 1) If B is obtained from A by interchanging two rows, then det(B) = -det(A).

- (2) (Type 2) If B is obtained from A by multiplying one row by k, then det(B) = k det(A).
- (3) (Type 3) If B is obtained from A by adding a multiple of one row to another, then det(B) = det(A).

Proof. **Part 1.** By induction on n. If n = 2, it is a straightforward calculation. Suppose that we interchange rows r and k. Let i < n, $i \neq r$, $i \neq k$. Expanding along row i, we get, $\det(B) = \sum_{j=1}^{n} (-1)^{i+j} b_{ij} \det(\overline{B}_{ij})$.

Now, for each j, \overline{B}_{ij} , is obtained from \overline{A}_{ij} by interchanging rows r and k, and so by induction, $\det(\overline{B}_{ij}) = -\det(\overline{A}_{ij})$. Also, since the *i*-th row of A and B are the same, we have that $a_{ij} = b_{ij}$ for all $j \leq n$. So,

$$\det(B) = \sum_{j=1}^{n} (-1)^{i+j} b_{ij} \det(\overline{B}_{ij}) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} (-\det(\overline{A}_{ij})) = -\sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(\overline{A}_{ij}) = -\det(A).$$

Part 2. Suppose that B is obtained by multiplying row i by k. Expanding along row i, we have that

$$\det(B) = \sum_{j=1}^{n} (-1)^{i+j} b_{ij} \det(\overline{B}_{ij}) =$$

$$\sum_{j=1}^{n} (-1)^{i+j} k a_{ij} \det(\overline{A}_{ij}) = k \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(\overline{A}_{ij}) = k \det(A).$$

Here $\overline{A}_{ij} = \overline{B}_{ij}$, because we only changed row *i*.

Part 3. Again, this is by induction on n. Suppose B is obtained from A by adding a multiple of row r to row k. If n = 2, this can be verified directly. Otherwise, let $i \leq n, i \neq r, i \neq k$. Then for all $j \leq n, \overline{B}_{ij}$ is obtained from \overline{A}_{ij} by adding the same multiple of of row r to row k. So, by induction, $\det(\overline{B}_{ij}) = \det(\overline{A}_{ij})$. Expanding along row i, we have that

$$\det(B) = \sum_{j=1}^{n} (-1)^{i+j} b_{ij} \det(\overline{B}_{ij}) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(\overline{A}_{ij}) = \det(A).$$

The following is an immediate corollary:

Corollary 11. If $A, B \in M_{n \times n}(F)$ are such that B is obtained from A by doing elementary row operations, then $\det(B) = 0$ iff $\det(A) = 0$.

Theorem 12. Let $A \in M_{n \times n}$. Then det(A) = 0 iff rank(A) < n iff A is not invertible.

Proof. We already know that rank(A) < n iff A is not invertible from previous sections. So, we just have to show this is equivalent to det(A) = 0.

For one direction, suppose rank(A) < n. Then its rows must be linearly dependent, so there is some row, say row *i*, which can be written as a linear combination of the other rows. Then by doing type 3 elementary row operations, adding multiples of other rows to row *i*, we obtain a matrix *B* from *A*, such that the *i*-th row of *B* is all zeros. Then det(B) = 0. But since doing type 3 elementary row operations don't change the determinant, we also have det(A) = 0.

For the other direction, suppose that rank(A) = n. Then by doing elementary row operations, we can obtain I_n from A. Since $det(I_n) = 1 \neq 0$, then $det(A) \neq 0$.

Section 4.3 A couple of more properties of the determinant.

We start with two lemmas that follow from the effect of doing elementary row operations on the determinant.

Lemma 13. Suppose that E is an elementary row matrix.

- (1) (Type 1) If E is obtained by interchanging two rows of I_n , then det(E) = -1;
- (2) (Type 2) If E is obtained from I_n by multiplying a row by k, then det(E) = k;
- (3) (Type 3) If E is obtained from I_n by adding a multiple of one row to another, then det(E) = 1;

Proof. The proof is immediate using Lemma 9 and that $det(I_n) = 1$. \Box

Lemma 14. Suppose that A = EB, where E is an elementary (row) matrix, then $det(A) = det(E) \cdot det(B)$

Proof. (1) (Type 1) If E is obtained by interchanging two rows of I_n , then det(E) = -1 and A is obtained from B by interchanging the same two rows. So

$$\det(A) = -\det(B) = \det(E) \cdot \det(B);$$

(2) (Type 2) If E is obtained from I_n by multiplying a row by k, det(E) = k and A is obtained from B by multiplying the same row by k. So

$$\det(A) = k \det(B) = \det(E) \cdot \det(B);$$

(3) (Type 3) If E is obtained from I_n by adding a multiple of one row to another, then det(E) = 1 and A is obtained from B by same operation. So

$$det(A) = det(B) = det(E) \cdot det(B);$$

And now, for the main theorem about matrix multiplication and the determinant:

Theorem 15. Suppose that $A, B \in M_{n \times n}(F)$. Then

$$\det(AB) = \det(A) \cdot \det(B)$$

Note that this also means that det(AB) = det(BA), although of course in general $AB \neq BA$. *Proof.* Case 1 det(A) = 0. Then $rank(AB) \leq rank(A) < n$, and so det(AB) = 0. The. det(AB) = 0 = det(A) \cdot det(B).

Case 2 det $(A) \neq 0$. Then A is invertible. And so it is the products of elementary matrices. (We can assume these are row elementary). Write $A = E_1...E_k$ where each E_i is elementary. Then

$$\det(AB) = \det(E_1 \cdot \dots E_k \cdot B) = \det(E_1) \det((E_2 \cdot \dots E_k \cdot B)) = \dots$$
$$\det(E_1) \det(E_2) \cdot \dots \det(E_k) \cdot \det(B) = \det(E_1 \cdot \dots E_k) \det(B) = \det(A) \det(B).$$

Corollary 16. If A is invertible, $det(A^{-1}) = \frac{1}{det(A)}$.

Proof. Exercise.

Finally, we note that the lemmas about elementary row operations and the determinant also hold for column operations. I.e. we have:

Fact 17. Suppose that B is obtained from A by doing one elementary column operation. Say B = AE, where E is an elementary column matrix. Then, if E is of:

- (1) Type 1, interchanging two rows: det(E) = -1, det(B) = -1 det(A);
- (2) Type 2, multiplying a row by k: det(E) = k, det(B) = k det(A);
- (3) Type 3: det(E) = 1, det(B) = det(A).

In particular, if E is an elementary matrix (row or column), then

 $\det(E) = \det(E^t).$

We leave the proof as an exercise.

Lemma 18. $det(A^t) = det(A)$.

Proof. If A is not invertible, then det(A) = 0, and $n > rank(A) = rank(A^t)$, so A^t is not invertible and $det(A^t) = 0$.

If A is invertible, then $A = E_1 \cdot \ldots \cdot E_k$, where each E_i is elementary. So

$$A^t = (E_1 \cdot \ldots \cdot E_k)^t = E_k^t \cdot \ldots \cdot E_1^t,$$

and for each $i \leq k$, $\det(E_i^t) = \det(E_i)$. Then, $\det(A^t) = \det(E_k^t \cdot \dots \cdot E_1^t) = \det(E_k^t) \cdot \dots \cdot \det(E_1^t) = \det(E_k) \cdot \dots \cdot \det(E_1) = \det(A).$